Multiple Novel Signals Mediate Thyroid Hormone Receptor Nuclear Import and Export*
نویسندگان
چکیده
Thyroid hormone receptor (TR) is a member of the nuclear receptor superfamily that shuttles between the cytosol and nucleus. The fine balance between nuclear import and export of TR has emerged as a critical control point for modulating thyroid hormone-responsive gene expression; however, sequence motifs of TR that mediate shuttling are not fully defined. Here, we characterized multiple signals that direct TR shuttling. Along with the known nuclear localization signal in the hinge domain, we identified a novel nuclear localization signal in the A/B domain of thyroid hormone receptor α1 that is absent in thyroid hormone receptor β1 and inactive in the oncoprotein v-ErbA. Our prior studies showed that thyroid hormone receptor α1 exits the nucleus through two pathways, one dependent on the export factor CRM1 and the other CRM1-independent. Here, we identified three novel CRM1-independent nuclear export signal (NES) motifs in the ligand-binding domain as follows: a highly conserved NES in helix 12 (NES-H12) and two additional NES sequences spanning helix 3 and helix 6, respectively. Mutations predicted to disrupt the α-helical structure resulted in a significant decrease in NES-H12 activity. The high degree of conservation of helix 12 suggests that this region may function as a key NES in other nuclear receptors. Furthermore, our mutagenesis studies on NES-H12 suggest that altered shuttling of thyroid hormone receptor β1 may be a contributing factor in resistance to thyroid hormone syndrome. Taken together, our findings provide a detailed mechanistic understanding of the multiple signals that work together to regulate TR shuttling and transcriptional activity, and they provide important insights into nuclear receptor function in general.
منابع مشابه
DNA binding domains in diverse nuclear receptors function as nuclear export signals
BACKGROUND The nuclear receptor superfamily of transcription factors directs gene expression through DNA sequence-specific interactions with target genes. Nuclear import of these receptors involves recognition of a nuclear localization signal (NLS) by importins, which mediate translocation into the nucleus. Nuclear receptors lack a leucine-rich nuclear export signal (NES), and export is insensi...
متن کاملCRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals
CRM1 is distantly related to receptors that mediate nuclear protein import and was previously shown to interact with the nuclear pore complex. Overexpression of CRM1 in Xenopus oocytes stimulates Rev and U snRNA export from the nucleus. Conversely, leptomycin B, a cytotoxin that is shown to bind to CRM1 protein, specifically inhibits the nuclear export of Rev and U snRNAs. In vitro, CRM1 forms ...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملThyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus.
Trip230 is a novel coactivator of the thyroid hormone receptor that is negatively regulated by the retinoblastoma tumor-suppressor protein. In an examination of its subcellular distribution, Trip230 localized predominantly to the vicinity of the Golgi instead of the nucleus, as other nuclear hormone receptor coactivators. Using a series of deletion mutants, a critical region identified for Golg...
متن کاملExportin 4 mediates a novel nuclear import pathway for Sox family transcription factors
SRY and other Sox-type transcription factors are important developmental regulators with various implications in human disease. In this study, we identified Exp4 (exportin 4) as an interaction partner of Sox2 in mouse embryonic stem cells and neural progenitors. We show that, besides its established function in nuclear export, Exp4 acts as a bona fide nuclear import receptor for Sox2 and SRY. T...
متن کامل